Sieving by prime powers

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Congruences modulo Prime Powers

Let p be any prime, and let α and n be nonnegative integers. Let r ∈ Z and f (x) ∈ Z[x]. We establish the congruence p deg f k≡r (mod p α) n k (−1) k f k − r p α ≡ 0 mod p ∞ i=α ⌊n/p i ⌋ (motivated by a conjecture arising from algebraic topology), and obtain the following vast generalization of Lucas' theorem: If α > 1 and l, s, t are nonnegative integers with s, t < p, then 1 ⌊n/p α−1 ⌋! k≡r (...

متن کامل

Exponential Sums modulo Prime Powers

where p is a prime power with m ≥ 2, χ is a multiplicative character (mod p), epm(·) is the additive character, epm(x) = e 2πix pm , and f, g are rational functions with integer coefficients. It is understood, that the sum is only over values of x for which g and f and both defined as functions on Z/(p), and g is nonzero (mod p). The sum is trivial if f and g are both constants, so we shall alw...

متن کامل

Combinatorial Congruences modulo Prime Powers

Let p be any prime, and let α and n be nonnegative integers. Let r ∈ Z and f(x) ∈ Z[x]. We establish the congruence p f ∑ k≡r (mod pα) (n k ) (−1)f ( k − r pα ) ≡ 0 ( mod p ∑∞ i=α n/p i ) (motivated by a conjecture arising from algebraic topology) and obtain the following vast generalization of Lucas’ theorem: If α is greater than one, and l, s, t are nonnegative integers with s, t < p, then 1 ...

متن کامل

Representation of Prime Powers by Binary Quadratic Forms

In this article, we consider the representation of prime powers by binary quadratic forms of discriminant D = −2q1 . . . qt where the product of primes q1 . . . qt ≡ 3 (mod 4), for instance if it is of special RichaudDegert type n2 ± 2 for odd n’s, n2 − 1 for even n’s. We consider all the ambiguous classes and Q( √|D0|), where D0 is the fundamental discriminant and we obtain a general criterion...

متن کامل

An inequality between prime powers dividing n !

For any positive integer n 2: 1 and for any prime number p let ep(n) be the exponent at which the prime p appears in the prime factor decomposition of nL In this note we prove the following; Theorem. Let p < q be two prime numbers, and let n > 1 be a positive integer such that pq I n. Then, (1) Inequality (1) was suggested by Balacenoiu at the First International Conference on Smarandache ::\ot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 1974

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa-24-5-491-497